MODULE GAME DEVELOPMENT & MIXED REALITY 17,5 ECTS
BACHELOR FALLTERM

Game Development 1
5ECTS

Course Content:

C++ according to current standards (object orientation, polymorphism, memory management, tem-
plates, STL, etc.); Memory areas (stack, heap, etc.); Runtime/memory debugging; Modern develop-
ment environments (e.g., Visual Studio); Static/Dynamic Libraries; Basic game engine architectures
(hierarchical, component-based); Design Patterns in game development (Singleton, Observer, Fac-
tory, Composite/Aggregate, etc.); Input/output methods, Graphical User Interface, and Accessibility;
Event systems and callbacks; Basic artificial intelligence in games (basic Steering Behavior, Decision
Trees, State Machines); Pathfinding (Dijkstra, A*); Physics simulation of rigid 2D bodies; Practical ex-
ercises and implementation of a simple game engine (C++).

Learning Outcomes: Students will be able to:

o Implement programs in a development environment using the C++ programming language,
analyze program flow structuredly with the help of software tools (runtime, memory), and esti-
mate the runtime of data structures.

o Explain basic algorithms and design patterns in the context of game development in their own
words and implement basic functionalities modularly using them (e.g., Artificial Intelligence,
simple physics, Event System, Graphical User Interface).

o Independently develop simple games in C++ and create, implement, and systematically debug
the necessary modular game engine architecture. They will be able to analyze and fix errors
and use version control systems (e.g., Git) in their development process.

Computer Graphics 1
3 ECTS

Course Content:

Applications of linear algebra in computer graphics (dot product for shading, cross product for normal
vectors, affine transformations, orthographic/perspective projection, etc.); Coordinate spaces and
transformations (object, world, NDC, camera, homogeneous coordinates, etc.); Ray tracing; Rasteriza-
tion; Render pipeline (e.g., OpenGL); Depth buffer (principle, z-fighting, etc.); Geometry definitions
(polygon models, Constructive Solid Geometry, volume data, implicit geometries, etc.); Simple real-
time reflection models (Lambert, Phong, Blinn-Phong, etc.); Basics of Texture Mapping (2D/3D tex-
tures, Bump/Normal Mapping); Alpha-blending; Basics of shader programming (Vertex Shader, Frag-
ment Shader); Debugging methods; Practical exercises using a modern graphics interface (e.g.,
OpenGL/GLSL).

Learning Outcomes: Students will be able to:

o Explain requirements for real-time rendering techniques, the difference between Ray Tracing
and Rasterization techniques, and the structure of modern render pipelines in their own words.

o Programmatically create simple 3D worlds (e.g., OpenGL) by defining textured polygon geom-
etry, transforming it through mathematical operations, and safely converting between different
coordinate spaces.

o Create simple shader programs (e.g., GLSL).

o Systematically debug simple graphics applications to analyze and fix errors.




Computer Vision
4 ECTS

Course Content:

Image Filtering (cross-correlation, convolution, Box-Filter, Mean/Median-Filter, Gauss-Filter, Sobel-
Filter, etc.); Fourier Transformation and digital image processing; High-pass/Low-pass filters; Sam-
pling Theorem; Aliasing; Edge detection (e.g., Canny Edge, Sobel); Feature Descriptors (e.g., Harris
Corner, SIFT); Feature Matching; Camera calibration (Pinhole camera, intrinsic parameters, radial/tan-
gential distortion, etc.); Pose estimation; Epipolar geometry; Depth from Stereo; Structure from Motion
and SLAM; Practical exercises using computer vision libraries (e.g., OpenCV).

Learning Outcomes: Students will be able to:

o Use simple filter operations of digital image processing and explain the relationship to the fre-
quency domain in their own words.

o Extract image features such as edges and corners and algorithmically detect them in different
images using descriptors.

o Explain the mathematical model of projection in a pinhole camera in their own words, calibrate
real cameras, and determine poses (position, rotation) relative to known markers in space.

o Explain basic concepts of visual tracking systems in their own words and assess their limita-
tions, optimal working conditions, and areas of application.

o Explain the basic concepts for determining depth values of a scene and the continuous posi-
tion determination of cameras through tracking in their own words.

Software Design Patterns
2.5ECTS

Course Content:

Introduction to object-oriented software design; Basics of UML notation; Design Patterns: Creational
Patterns (e.g., Factory, Singleton), Structural Patterns (Adapter, Composite, Decorator, Facade
Proxy), Behavioral Patterns (lterator, Mediator, Observer, State, Strategy) and application examples;
Basics of Refactoring; Practical exercises applying Design Patterns.

Learning Outcomes: Students will be able to:

o Apply their knowledge of Design Patterns and their advantages/disadvantages to sub-prob-
lems to modularize software architecture.

o Optimize parts of software architectures using Design Patterns (Refactoring).

o Understand basic software architectures using UML and communicate in professional lan-
guage.

o Perform improvement steps in the code without introducing new functionality (Refactoring).

Multimedia Project 2 (MMP2a)
3 ECTS
Course Content:

Web or game project conducted in teams of two students from the MultiMediaTechnology program;
independent selection and execution of the project; independent preparation of the project; software
development during the studio week; application of software project management; use of git for team-
work; conducting simple user tests; topics fall within the fields of Web & Mobile Development or Game
Development & Mixed Reality.

Learning Outcomes: Students will be able to:

o] Develop a project idea for a simple programming project within technical constraints as a
team. They develop a concept with reference to the target audience.

o} Plan and program a simple software project as a team. They carry out the implementation
within a given timeframe.

2|3



o] Use the version control system git to manage the source code as a team.

o Find and utilize existing software packages (e.g., libraries, packages) and integrate them into
their own software project.

o} Use an issue tracker to prioritize features and bugs. Based on this, they make decisions about
which issues need to be addressed to create a functional project within the given time.

o} Apply methods and tools for team and time management independently, individually adapted,
and situation-specifically for their project.

o] Understand the group dynamic aspects in teamwork and perceive them in their own team-
work, question, analyze, and consciously shape them.

o] Present the finished project to instructors and students and conduct user tests. They describe
the project in text, images, and video on the portfolio website of the program.

313



